Deep Learning

Roland Olsson

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly complex rules to categorize complicated shapes such as faces.

Layer 1: The computer identifies pixels of light and dark.

Layer 2: The computer learns to identify edges and simple shapes.

Layer 3: The computer learns to identify more complex shapes and objects.

Layer 4: The computer learns which shapes and objects can be used to define a human face.
The first deep learning success
Classifying handwritten digits

Published test error rates without preprocessing for the MNIST dataset

- 12% for linear discriminants
- 3.3% for 40 PCA + quadratic classifier
- 1.4% for SVM with Gaussian kernels
- 0.35% for NN with 5 hidden layers and elastic deformations
Other success stories

This is the first time a single type of model can compete with very many previous state-of-the-art results in machine learning.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Best Previous accuracy</th>
<th>Deep learning accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollywood - Activity recognition</td>
<td>48%</td>
<td>53%</td>
</tr>
<tr>
<td>TIMIT - Phoneme Classification</td>
<td>79.2%</td>
<td>80.3%</td>
</tr>
<tr>
<td>CIFAR - Object classification</td>
<td>80.5%</td>
<td>82%</td>
</tr>
<tr>
<td>NORB – Object classification</td>
<td>94.4%</td>
<td>95%</td>
</tr>
<tr>
<td>AVLettters Lip reading</td>
<td>58.9%</td>
<td>65.8%</td>
</tr>
<tr>
<td>Paraphrase detection</td>
<td>76.1%</td>
<td>76.4%</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The single-algorithm hypothesis

Auditory Cortex learns to see

The same piece of brain tissue can process sight or sound or touch
The single-algorithm hypothesis

Frog can learn to use the 3rd eye

Seeing with your tounge

The brain is a general-purpose machine that can be tuned to specific tasks.
A deep neural net for MNIST
Basic architecture for an autoencoder neural network
Smart meter data

- Hourly data for 2012 and 2013 for about 8000 smart meters at Hvaler
- 8760 hours per year and 8000 smart meters give a total of 70 million instances per year.
- In the future, 2.7 million meters instead of 8000.
- Big data! Avoids overfitting in deep learning.
Deep neural net for modeling smart meter data

Use a deep subnet to model each individual building. For example, reduce the 8760 measurements for 2012 to say 4 parameters.

- Connect this net to a following one that has one input for each of the previous 48 hours.
- Train, validate and test the last net on data from 2013 and 2014.
- For each meter, also include geographic position, temperature, month, day of week and hour.
Deep neural net technologies

- Sparse initialization.
- Dropout regularization instead of L2.
- Minibatches instead of full batches.
- Optimized momentum schedule
- Massively parallel implementations
- Do not use the NN toolbox in Matlab.
Developing disruptive deep learning

- Learn from neuroscience e.g. episodic memory.
- Use automatic programming (ADATE) to generate:
 - New initial connections
 - New neuron designs
 - New regularization methods
 - New error measures
Automatic Design of Algorithms through Evolution (ADATE)
A control system example
Driving an autonomous car as fast as possible

- We have implemented a realistic physical simulation including wind resistance, tire stiffness, friction and other parameters.
- Driver inputs were chosen to speed and angles to the five points 20, 40, 60, 80 and 100 meters ahead of the car and in the middle of the road.
- Driver output is steering, gas and brake.
- Our methods are applicable to any control system learning or reinforcement learning scenario.
Specification for fast driving of autonomous cars

- Randomly generated flat tracks with varying widths and curve angles but constant friction
- Power and torque curves, brakes, car dimensions etc chosen to match a Golf class car
- 16 tracks, each about 3 km long used for training
- 96 tracks other tracks from the same probability distribution used for validation
- Yet another set of 96 tracks used for testing
An example of a random track
Skid marks and acceleration / braking for the best drivers
A simple ADATE generated driver

fun f (Us, Un, Width, DistToCenter, RotationSlipVelocity, Phi, Alpha10, Alpha20, Alpha30, Alpha40, Alpha50) =

 vector2d(
 tanh((0.3271902841577998 - Us) /
 (Us * Alpha30 * Alpha30) -
 3.0 * Us)
 -
 Us,
 4.0 * Alpha20 - 2.0 * Phi)
The best ADATE generated driver

fun f (Us, Un, Width, DistToCenter, RotationSlipVelocity, Phi, Alpha10, Alpha20, Alpha30, Alpha40, Alpha50) =
vector2d(
 tanh(
 (0.310296196852 - tanh(tanh Us)) / (Us * Alpha30 * Alpha30) - 3.0 * Us)
 -
 (if Us < 32.9722111893 / 100 andalso Width < 3.99581671721 / 20 then Us else
 (if Us < 37.006446585587194 / 100 then
 ~0.1183128271561453 / (Alpha40 * Alpha40)
 else
 Alpha50) +
 Width),
 4.0 * Alpha20 - 2.0 * Phi)
Experimental results for car racing

- We have generated driving algorithms using both automatic programming (ADATE) and neural networks trained with evolution strategies.
- The best ADATE generated driver has a mean velocity of 32.4 m/s whereas the best neural network driver manages 24.3 m/s on our test tracks.
- Our own attempts to write autonomous vehicle control algorithms failed miserably whereas automatic programming generated them easily.
Some features of ADATE

- Synthesis of primitively or generally recursive programs.
- Automatic invention of help functions where and when needed.
- “Loose” specifications requiring only evaluation (grading), not specific outputs.
- Kingdom based on size-evaluation value ordering and diversification methods.
- Starts with one initial program and grows/shrinks dynamically.
- ES / RP optimization of floating point constants